2,113 research outputs found

    Sectoral shocks and metropolitan employment growth

    Get PDF
    Horvath and Verbrugge (1996) argue that when investigating the sources of aggregate fluctuations, it is important to use the highest frequency data available. Using monthly data for the U.S. economy they show that industry-specific shocks are more important in explaining fluctuations in industrial production than are common aggregate shocks. With the exception of Coulson (1999) studies that examine the issue at the subnational level have used low frequency, spatially aggregated data. The authors examine the relative importance of national disturbances versus local industry shocks for employment fluctuations using monthly data on five metropolitan statistical areas (MSAs). Input-output tables are used to quantify the strength of interindustry linkages, which are then used to help identify a structural VAR model for each MSA. Within-MSA industry shocks are found to explain considerably more of the forecast-error variance in industry employment growth (87-94 percent) than do common national shocks to productivity and monetary policy, and the manufacturing, services, and government sectors make the largest individual contributions to local employment variance. The authors also find that the measured importance of national shocks for employment fluctuations increases as the level of spatial aggregation increases.Employment (Economic theory)

    Comment on "Nucleon elastic form factors and local duality"

    Get PDF
    We comment on the papers "Nucleon elastic form factors and local duality" [Phys. Rev. {\bf D62}, 073008 (2000)] and "Experimental verification of quark-hadron duality" [Phys. Rev. Lett. {\bf 85}, 1186 (2000)]. Our main comment is that the reconstruction of the proton magnetic form factor, claimed to be obtained from the inelastic scaling curve thanks to parton-hadron local duality, is affected by an artifact.Comment: to appear in Phys. Rev.

    Influence of molecular weight of polycation polydimethyldiallylammonium and carbon nanotube content on electric conductivity of layer-by-layer films

    Get PDF
    For biological and engineering applications, nm-thin films with high electrical conductivity and tunable sheet resistance are desirable. Multilayers of polydimethyldiallylammonium chloride (PDADMA) with two different molecular weights (322 and 44.3 kDa) and oxidized carbon nanotubes (CNTs) were constructed using the layer-by-layer technique. The surface coverage of the CNTs was monitored with a selected visible near infrared absorption peak. Both the film thickness and the surface coverage of the CNTs increased linearly with the number of CNT/PDADMA bilayers deposited (film thickness up to 80 nm). Atomic force microscopy images showed a predominantly surface-parallel orientation of CNTs. Ohmic behavior with constant electrical conductivity of each CNT/PDADMA film and conductivity up to 4 · 103 S/m was found. A change in PDADMA molecular weight by almost a factor of ten has no effect on the film thickness and electrical conductivity, only the film/air roughness is reduced. However, increasing CNT concentration in the deposition dispersion from 0.15 up to 0.25 mg/ml results in an increased thickness of a CNT/PDADMA bilayer (by a factor of three). The increased bilayer thickness is accompanied by a decreased electrical conductivity (by a factor of four). The decreased conductivity is attributed to the increased monomer/CNT ratio

    Dual-readout Calorimetry

    Full text link
    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\sigma}/E \approx 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape

    Centrifugation and capillarity integrated into a multiple analyte whole blood analyser

    Get PDF
    A unique clinical chemistry analyser is described which processes 90 μl of whole blood (fingerstick or venous) into multiple aliquots of diluted plasma and reports the results of 12 tests in 14 min. To perform a panel of tests, the operator applies the unmetered sample directly into a single use, 8 cm diameter plastic rotor which contains the required liquid diluent and dry reagents. Using centrifugal and capillary forces, the rotor meters the required amount of blood, separates the red cells, meters the plasma, meters the diluent, mixes the fluids, distributes the fluid to the reaction cuvettes and mixes the reagents and the diluted plasma in the cuvettes. The instrument monitors the reagent reactions simultaneously using nine wavelengths, calculates the results from the absorbance data, and reports the results

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure

    Evaluation of incidence rates in pre-clinical studies using a williams-type procedure

    Get PDF
    The analysis of dose-response relationships is a common problem in pre-clinical studies. For example, proportions such as mortality rates and histopathological findings are of particular interest in repeated toxicity studies. Commonly applied designs consist of an untreated control group and several, possibly unequally spaced, dosage groups. The Williams test can be formulated as a multiple contrast test and is a powerful option to evaluate such data. In this paper, we consider simultaneous inference for Williams-type multiple contrasts when the response variable is binomial and sample sizes are only moderate. Approximate simultaneous confidence limits can be constructed using the quantiles of a multivariate normal distribution taking the correlation into account. Alternatively, multiplicity-adjusted p-values can be calculated as well. A simulation study shows that a simple correction based on adding pseudo observations leads to acceptable performance for moderate sample sizes, such as 40 per group. In addition, the calculation of adjusted p-values and approximate power is presented. Finally, the proposed methods are applied to example data from two toxicological studiesthe methods are available in an R-package. © 2010 The Berkeley Electronic Press. All rights reserved

    Hadron detection with a dual-readout fiber calorimeter

    Full text link
    In this paper, we describe measurements of the response functions of a fiber-based dual- readout calorimeter for pions, protons and multiparticle "jets" with energies in the range from 10 to 180 GeV. The calorimeter uses lead as absorber material and has a total mass of 1350 kg. It is complemented by leakage counters made of scintillating plastic, with a total mass of 500 kg. The effects of these leakage counters on the calorimeter performance are studied as well. In a separate section, we investigate and compare different methods to measure the energy resolution of a calorimeter. Using only the signals provided by the calorimeter, we demonstrate that our dual-readout calorimeter, calibrated with electrons, is able to reconstruct the energy of proton and pion beam particles to within a few percent at all energies. The fractional widths of the signal distributions for these particles (sigma/E) scale with the beam energy as 30%/sqrt(E), without any additional contributing terms

    New empirical fits to the proton electromagnetic form factors

    Get PDF
    Recent measurements of the ratio of the elastic electromagnetic form factors of the proton, G_Ep/G_Mp, using the polarization transfer technique at Jefferson Lab show that this ratio decreases dramatically with increasing Q^2, in contradiction to previous measurements using the Rosenbluth separation technique. Using this new high quality data as a constraint, we have reanalyzed most of the world e-p elastic cross section data. In this paper, we present a new empirical fit to the reanalyzed data for the proton elastic magnetic form factor in the region 0 < Q^2 < 30 GeV^2. As well, we present an empirical fit to the proton electromagnetic form factor ratio, G_Ep/G_Mp, which is valid in the region 0.1 < Q^2 < 6 GeV^2
    corecore